Hướng dẫn giải chi tiết Giải bài 7.44
Phương pháp giải
* Cách cộng (trừ) 2 đa thức:
Cách 1: Bỏ dấu ngoặc rồi nhóm các hạng tử cùng bậc.
Cách 2: Đặt tính cộng (trừ) sao cho các hạng tử cùng bậc đặt thẳng cột với nhau rồi cộng ( trừ) theo từng cột.
* Cách nhân 2 đa thức:
Cách 1: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau
Cách 2: Đặt tính nhân:
+ Nhân lần lượt mỗi hạng tử ở dòng dưới với đa thức ở dòng trên và viết kết quả trng một dòng riêng.
adsense
+ Viết các dòng sao cho các hạng tử cùng bậc thẳng cột với nhau để thực hiện phép cộng theo cột.
* Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
Lời giải chi tiết
a) Ta có:
B = (A + B) – A
= (x3 + 3x + 1) – (x4 + x3 – 2x – 2)
= x3 + 3x + 1 – x4 – x3 + 2x + 2
= – x4 + (x3 – x3) + (3x + 2x) + (1 + 2)
= – x4 + 5x + 3
b) C = (A – C) – A
= x5 – (x4 + x3 – 2x – 2)
= x5 – x4 – x3 + 2x + 2)
c) D = (2x3 – 3) . A
= (2x3 – 3) . (x4 + x3 – 2x – 2)
= 2x3 . (x4 + x3 – 2x – 2) + (-3) .(x4 + x3 – 2x – 2)
= 2x3 . x4 + 2x3 . x3 + 2x3 . (-2x) + 2x3 . (-2) + (-3). x4 + (-3) . x3 + (-3). (-2x) + (-3). (-2)
= 2x7 + 2x6 – 4x4 – 4x3 – 3x4 – 3x3 + 6x + 6
= 2x7 + 2x6 + (-4x4 – 3x4) + (-4x3 – 3x3) + 6x + 6
= 2x7 + 2x6 – 7x4 – 7x3 + 6x + 6
d) P = A : (x+1) = (x4 + x3 – 2x – 2) : (x + 1)
Vậy P = x3 – 2
e) Q = A : (x2 + 1)
Nếu A chia cho đa thức x2 + 1 không dư thì có một đa thức Q thỏa mãn
Ta thực hiện phép chia (x4 + x3 – 2x – 2) : (x2 + 1)
Do phép chia có dư nên không tồn tại đa thức Q thỏa mãn
–>
— *****
Giải bài 7.45 trang 46 SGK Toán 7 Kết nối tri thức tập 2 – KNTT
Cho đa thức P(x). Giải thích tại sao nếu có đa thức Q(x) sao cho P(x) = (x – 3). Q(x) (tức là P(x) chia hết cho x – 3) thì x = 3 là một nghiệm của P(x)
Hướng dẫn giải chi tiết Giải bài 7.45
Phương pháp giải
Nghiệm của đa thức biến x là giá trị của x mà tại đó, đa thức có giá trị bằng 0.
Lời giải chi tiết
Vì tại x = 3 thì P(x) = (3 – 3) . Q(x) = 0. Q(x) = 0 nên x = 3 là một nghiệm của đa thức P(x)
–>
— *****
Giải bài 7.46 trang 46 SGK Toán 7 Kết nối tri thức tập 2 – KNTT
Hai bạn Tròn và Vuông tranh luận với nhau như sau:
Hãy cho biết ý kiến của em và nêu một ví dụ minh họa.
Hướng dẫn giải chi tiết Giải bài 7.46
Phương pháp giải
Tổng của các đa thức là đa thức có bậc không lớn hơn bậc của các đa thức thành phần
Lời giải chi tiết
Tròn đúng, Vuông sai vì tổng của các đa thức là một đa thức có bậc không lớn hơn bậc của các đa thức thành phần
Đa thức M(x) = x3 + 1 có thể viết được thành tổng của hai đa thức bậc 4 có hệ số cao nhất là 2 số đối nhau.
Ví dụ:
x3 + 1 = (x4 + 1) + (-x4 + x3)
–>
— *****